Embedding Academic Literacy Support Within the Electrical Engineering Curriculum: A Case Study

Iain Skinner and Pam Mort

Abstract—This paper reports the integration of supplementary training in academic literacy, for those without the assumed entry standard, into a standard electrical engineering program without compromising any other educational objectives. All students who commenced an engineering degree were tested as part of their first session’s assessment activities. Those identified as having inadequate academic literacy were directed to study a specifically designed credit-bearing course, which is controlled by the Engineering Faculty but was designed and is taught in collaboration with academic literacy teachers. Students who completed this course responded positively and also demonstrated measurable improvement in their communication skills. The approach has alleviated the skepticism about teaching academic literacy usually found amongst engineering faculty staff and has been adopted by the wider Engineering Faculty.

Index Terms—Academic literacy, engineering education, professional communication, syllabus design, writing.

I. INTRODUCTION

MOST degree programs operate under the assumption that, because the students are enrolled, these students must have the necessary communication skills, which is often termed academic literacy within Australian universities. Academic literacy, though, involves more than writing well; it also encompasses understanding the task at hand, reading comprehension and critical thinking skills.

In contrast, few degree programs provide explicit help for any student who does not already possess such assumed skills. This paper is not the place to discuss why students may not have the assumed background, or to explore the size of the problem. It suffices to note that, in visiting other institutions, attending conferences and sharing experience of students with other faculty, the authors note the situation within their institution is a common one.

Given this widespread problem of substandard literacy amongst commencing students from both English-speaking (ESB) and non-English-speaking backgrounds (NESB), and that engineering education now focuses on outcomes which include an explicit recognition of communication skills [1], [2], it is an opportune moment to report some relevant experiences and innovations and, in particular, the development of a mechanism that provides proven, explicit support to students who begin studying towards a Bachelor of Engineering degree (BE) without the assumed level of academic literacy.

The key steps of this mechanism are: 1) to identify students who are at risk of failing, all students are tested for academic literacy as part of an assessable classroom activity, without any compromise of the engineering assessment process; 2) those considered to have poor communication ability are invited to attend a special course which earns them credit towards their BE; and 3) the students who accept the invitation undertake learning activities designed and marked both by academics of the Engineering Faculty and by literacy teachers of The Learning Centre.

At the University of New South Wales (UNSW), Australia, conventionally, there have been two approaches to helping students of electrical engineering to develop their communication skills. The more common of these approaches is that the Engineering Faculty hopes that the students acquire the necessary ideas and skills while formally studying and being assessed on other material. Normally, such students would have available to them the out-of-class help from learning consultants, who are not engineering professionals but specialist literacy teachers or trained peer writing assistants, who may or may not be research students. The less common approach is to have academic literacy requirements formally identified within the program of study as an explicitly assessable outcome. The debate over the correct place of literacy within the engineering curriculum is ancient. The Latin author Vitruvius [3] advocated for engineers to become “men of letters,” that they might write better reports. Although the less common approach is becoming more widely accepted, see, for example, [4]–[6], in response to the recent focus on outcomes, it has not been extended to providing integrated help for students whose communication skills start below the assumed standard of students new to tertiary study. This specific assistance is the focus of what is reported here.

The problem, as it generally appears, is that literacy support is not provided by engineering professionals within the undergraduate syllabus, but, instead, as an extra outside the engineering curriculum, by literacy teachers. Based on the authors’ experience and the literature, this approach usually has limited success, as it is an additional imposition on students who are already struggling with their academic workload and is bereft of professional context [7]–[9]. On the other hand, the inclusion of literacy support within the classroom is typically resisted by faculty staff because it is perceived as diluting the engineering syllabus and not being in the interest of the entire student cohort.

The approach described here was derived from a deliberate and systematic long-term partnership between the literacy
teaching staff at UNSW’s Learning Centre and the teaching academics of the School of Electrical Engineering, in order to address this problem of a lack of appropriate professional context.

When dealing with class-sizes of many hundreds, the vexed question of how to identify students needing support has to be successfully resolved before any serious such support can be provided. Clearly voluntary self-identification is never going to work. It may seem appealing to rely on faculty staff referring these students, but not all staff are diligent and aware of the situation and not all students come to their attention. The remaining option is for mass-screening of the commencing students, which, in turn, presents two challenges: how to mass-screen cost effectively and how to do this without influencing the learning aims and assessment schemes in place in existing introductory courses.

Section III will explain how to conduct mass screening of a first-year student cohort. Section IV provides details of the “Engineering” course that was developed specifically to help students develop the literacy skills they need in order to study and subsequently practice as electrical engineers. Section V presents some indicative reactions from students.

II. FACULTY REACTION

It is instructive to follow the sequence of innovations that led to the current structure supporting students’ literacy, and the accompanying changes in the attitudes of faculty academic staff. From this process emerged several key findings.

When moves to improve academic literacy began in 2000, the electrical engineering’s faculty staff reacted skeptically to any suggestion that communication skills needed teaching in the professional context. Below are some typical comments [retrieved from archived e-mail correspondence or notes of syllabus development meetings]:

Just send them to the [English language instructors], (2001)
We need to be careful what we require of students. We don’t want to frighten them. They don’t want to learn to write. (2004)
If they want to learn to write, then let them study a BA. (2004)
There isn’t enough time to teach … [insert favorite technical topic] … so we cannot afford to waste time on literacy. (2004)
We are only supposed to test their technical competence. (2004)

Engineers are naturally conservative, cautiously introducing innovations and testing each change to a system. Changing the syllabus to encompass literacy was no exception. Persistent presentation of the positive effects of literacy training on student learning, and students’ own appreciation of the course, has won over enough of the skeptics. The experimental evidence proved decisive.

The first discovery was how positively the electrical engineering students see instruction in literacy. After refining the formal provision of out-of-class support, in 2003, a single, 1-h lecture was added to the introductory electrical engineering course, at the expense of a traditional technical one. At the end of the course, students were asked a simple question:

Was the lecture by The Learning Centre useful? yes/no/undecided

Of the 115 students, 63% agreed that the particular class helped their learning. In 2004, the approval rate was higher (but not statistically so), and exceeded the approval level for most of the technical classes about which they were also asked that year. Furthermore, this survey established that 47% of students themselves did not believe they could communicate sufficiently well, and that 54% expected that they would be learning how to write in a suitably professional manner during the course of their electrical engineering degree. Students themselves, when asked, saw the value of formal learning about professional communication; the instruction was not resented by the class. Nevertheless the target of this work is only those students who need “extra” help, not the entire class.

The next key piece of evidence was showing how the problem was not merely one of command of the English language, as illustrated by the following examples. Answer A shows that the student, although seemingly competent in English, did not understand either the extract of text provided, which explained the concept of accountability, or the question (or, perhaps, both).

Question:
Were members of your group held accountable to each other? If so explain how; if not, why not?

Answer A quoted verbatim (answering “what” instead of “how”)

Yes we were held accountable to each other. For example, someone calculated the appropriate height of our design and everyone worked on that. Some of the others were testing different things on our design, like the robustness, rigidity, etc., and then in the end, we just combined all of these and came up with the final design.

Answer B quoted verbatim (answering “how” and “why”)

Yes. Every member ideas were discussed and critiqued, and if the idea merited it, refined and implemented. We viewed this as an important part of our design step for two reasons. It insured that one person’s mistake could not jeopardize the project, since all members had agreed to it, as well as providing a much deeper “well” of engineering knowledge and procedures for us to draw upon, for the betterment of our prototype.

Clearly answer B is a more appropriate answer to the question (despite the spelling errors and run-on sentence) than is example answer A, which merely describes the division of labor. The following example of a NESB student’s writing shows his/her difficulty with English (in both comprehension and expression).

Question
Briefly describe how your group made decisions. Do you think your group made good decisions? Tell us why or why not?

Answer C quoted verbatim (NESB)
The focus for us to consider is moving-down speed. Most of us explain idea each in 3 min after a short thinking. It is not difficult to choice the best one. It this situation, members begin to conduct the best idea immediately. It is the first time for us to make decision like this. Everyone try
their implementation will always be slow, but it is possible. From these examples, observe that academic literacy is not always congruent with English language proficiency, as even native speakers can have difficulty in understanding questions and writing clearly.

This conclusion meant that refining UNSW admission procedures would not remove the problem with academic literacy, as such procedures would concentrate solely on proficiency with English, and there was a wider acceptance that the electrical engineering syllabus itself needed to address the problem.

Finally, in 2005, the method of assessing an entire class was tested in that same level 1 Electrical Engineering course, as will be explained in Section III. This test showed that literacy could be assessed without either compromising the integrity of the learning aims of the associated academic course, or consuming too many resources.

The outcomes of this preliminary experience working within electrical engineering provided the evidence to persuade other engineering disciplines that the structured provision of instruction in academic literacy belongs in the undergraduate Engineering program. When the Engineering Faculty revised its approach to the teaching of all students beginning a B.E. (not just electrical engineering) in 2006, the ideas and procedures already refined and available were readily endorsed and transferred to the wider context. All engineering students commencing their first year of undergraduate study now have their literacy assessed as part of their first professional engineering course, and have permission to choose an elective that will explicitly develop their literacy skills in the context of their practice of engineering. The Engineering Faculty has also chosen to include a full course developing academic literacy as a compulsory part of the new pre-undergraduate diploma program, which is designed to prepare would-be students who completed secondary school without studying either the appropriate mathematics or physics. Indeed, the model introduced in Engineering is now being examined by other faculties within UNSW.

The authors encourage those readers who are seeking to change the way the syllabus regards speaking and writing, to persist. Making such changes requires cooperation and time; their implementation will always be slow, but it is possible.

III. Mass-Testing for Literacy

Before students can be effectively helped to improve their academic literacy, they first need to know that: 1) it needs improvement, and 2) help is available. This section explains how to accomplish this.

A. The Test Design

There are several requirements to bear in mind when designing a test for mass screening:

- that the tests be part of an assessable item (i.e., students received marks and so perceived the task as a valuable activity);
- that the tests be undertaken close to the start of an introductory course (i.e., could depend on no particular prior knowledge or experience);
- that the questions be relevant to the course content but still capable of revealing the key features of literacy (i.e., a valid tool/method); and
- that the tests be simple to manage (i.e., logistically possible).

Since the late 1990s, some Australian universities have assessed first-year students’ writing by using mass screening. The testing methodology chosen in this project was developed by Bonanno et al. [10]–[12] and is known as Measuring the Academic Skills of University Students (commonly termed “the MASUS”).

The academic literacy test (ALT) that was designed has two sections: (A) Writing (short answers only) and (B) Reading Comprehension (answering questions based on one or two short text extracts). These questions assess a student’s ability to: 1) analyze the requirements of the question; 2) present a sensible answer to the question asked; and 3) express ideas clearly and concisely. The comprehension questions also assess a student’s ability to locate relevant information and then accurately paraphrase it. These are basic skills needed for both study and professional practice.

In Part A, students are required to write an extended reflective response that includes an explanation and expresses an opinion or evaluation. In different versions of the ALT, this extended response has been about a recent experience within the course being assessed, or about an item of current interest about which the students are expected to have opinions, e.g., the use of nuclear energy, or dealing with spam e-mails. In responding to a text extract in Part B, students provide factual and interpretive answers. The source might be the course textbook, or else it might be documents such as the university’s policies on using computing facilities or safe conduct in laboratories, which are equally relevant at the starting of an electrical engineering degree.

This test is designed to be completed easily in 20 min; students are allowed 30 min.

B. Implementing the Test

The tests were administered during a standard, scheduled plenary class (i.e., lecture), in the second or third week of the teaching session. It was found that assigning 3% of the summative grade to completion of the task meant that almost all students made the effort to participate. That the test was graded by people other than the instructing faculty staff provided an incentive for the Engineering’s faculty staff to participate, notably by providing the class-time and the invigilation.

Once attempted, integration of mass literacy assessment with the compulsory introductory engineering course (over 1000 students) has proven to be surprisingly easy.

C. Processing the Test

The test was marked by appropriately trained literacy teachers who were familiar with the writing requirements of engineering. These markers provided an individual literacy profile (ILP) for each individual student. For writing relevant answers to the questions a score out of 1 was awarded, and for participating in the test a score of 1 was awarded, providing a maximum mark of 2 towards the summative assessment for the course in which the ALT is embedded.
The ILP is a four-dimensional construct that addresses these criteria: structure, writing style, grammar, and reading comprehension. The details of the each specific criterion are given in Table I. Interested readers are referred to the Appendix for the full document used for marking and feedback as an ILP. All these details were provided to the students, so that they could interpret their own ILPs.

Each criterion was graded using a four-point scale \{5, 4, 2, 1\}. The value 4 indicates the minimum level of skill assumed of new tertiary students; value 5 corresponds to the standard expected of graduates, the lower two values (1 and 2) indicate unsatisfactory standards. Each student received a set of four numbers as an ILP, together with a comment indicating whether the marker considered the scores satisfactory or not. All students were invited to discuss their ILPs with a literacy teacher, if they wished. Despite providing a detailed written explanation of how to interpret the ILP, some students do not understand its meaning; some seek more clarification; and, of course, some want to negotiate the marker’s decisions. Although a significant fraction of the ILPs were found to be uniform across all criteria, namely all 2 s or all 4 s, a typical ILP has values corresponding to two different levels of competence. A small proportion spread over three levels. None had all four levels.

Readers may be interested in the choice of a seemingly strange scale of \{5, 4, 2, 1\} for the ILP assessments. The first trial (2005) used \{3, 2, 1, 0\}, but assessors were uncomfortable assigning 0; the second employed \{4, 3, 2, 1\}, but students could not accept that 2 (out of 4) was unsatisfactory; the third implemented the reverse scale \{1, 2, 3, 4\}, but that caused too much confusion amongst students.

The final step in the assessment process was that each student with communication skills deemed to be inadequate, i.e., below the assumed standard of commencing students, was contacted and invited to enroll in the literacy support course as an elective. This course is discussed in more detail in Section IV.

On the surface, it may seem attractive to have a compulsory course, instead of an optional one. Readers are cautioned to consider the difference between the engagement of a motivated class and a resentful one, although this topic is not explored here.

IV. LITERACY SUPPORT

There are various models of generic courses to develop academic literacy. Most institutions run both generic courses in English for Academic Purposes and generic workshops that address specific skills, such as note taking. These courses and workshops, as mentioned above, are outside the undergraduate programs and are not specifically designed for the context of Electrical, or any other form of, Engineering. Indeed, by default, the implicit context is often that of the Liberal Arts, providing insufficient improvement for engineering students. This result is inevitable as context is crucial to the learning process. When it comes to communication skills, that which is to be communicated defines the appropriate conventions and effective mechanisms. [13] provides an excellent discussion of this need for context. The decision to provide a credit-bearing course in communication skills, embedded within an undergraduate engineering program, was a novel venture at UNSW and appeared to be crucial to the overall success of the innovation.

A. Course Design

UNSW’s engineering students typically undertake four full courses per half-year, with a selected number of half-courses being available to mix and match. The first version of the credit-bearing course to enhance the academic literacy of engineering students was a half-course. Starting in 2008, a full-course will also be available to students.

These literacy support courses developed from several years (from 2000 to 2004) of working with students new to the electrical engineering degree program. The first efforts in 2000 concentrated on providing remedial literacy support in the context of “after-the-fact.” Students who were identified as failing the introductory electrical engineering course primarily because of poor communication skills attended supplementary classes (24 h over eight weeks) and were then reassessed.

This experience showed that, for the initiative to work and to be sustainable, it was critical that any formal literacy support course be designed and controlled by the engineering faculty, even though most of the classroom teaching and learning support would necessarily be provided by Learning Centre staff. This arrangement conformed to the conventional engineering paradigm of subcontracting for specific expertise: the learning aims were scoped within electrical engineering and the specific classroom strategies used to achieve these were determined in consultation with the academic literacy teachers. In the words of the material provided to students,

“Most of the classroom teaching is done by Ms… but Dr … is the lecturer-in-charge.”

(ENGG0380 Course Outline 2007)

Engineering Faculty members identified discipline-specific assessment tasks and marking criteria. For example, report topics were directly related to new technologies of interest to
students (examples relevant to electrical engineering included smart cars, WiFi, e-waste, and LCD displays) and required them to present their reports in the style of an IEEE survey paper. Despite students, who were only beginning their university studies, finding this challenging, they saw it as relevant and, consequently, attempted the assignment seriously. Faculty staff attended some classes, were available to consult with students when needed, marked and gave feedback on the written reports, and attended and assessed oral presentations. Faculty ownership and involvement gave the course an authenticity among the student body that was lacking in external courses with similar agendas (e.g., those provided by the School of English).

In the current version of the half-course (ENGG0380), the official learning objectives are:

- improved structuring of formal communication in written and oral form;
- correct use of formal language, i.e., aligned more closely to professional expectations;
- identification of rhetorical structures;
- identification and production of appropriate forms (genres) of communication for different purposes; and
- summarizing, paraphrasing, and referencing correctly.

To keep the engineering context, the students write about topics related to technology: a specific technology itself, or how it is or might be used, or its effects on the way people live. To this end, some of the older, classic science-fiction novels and short stories have proven helpful.

As this is a credit-bearing undergraduate course, it could not simply provide skills. The study of genre and rhetorical conventions, and specifically those related to the Engineering profession, provided the academic dimension to the course that gained it approval by the University’s supreme academic body, and thereby allowed its inclusion in the program’s catalog as an elective.

B. Teaching Approach

The first, informal course (in 2000) consisted of eight 3-h workshops. The half-course, ENGG0380, has 12 2-h tutorials consisting of in-class tasks and associated work requiring completion outside class. Individual and group work is required and classes are strictly limited to 24 students. The course is also available outside the standard sessions, over an intensive two-week period.

At first glance, it may appear the course and associated assessment tasks are too demanding for weaker students and something more “basic” should be offered. However, it is argued that a high challenge combined with strong support assists learners to push beyond their current capabilities despite feeling outside their comfort zones [14]. This approach requires using both deductive and inductive instructional methods where students are required actively to construct and reconstruct their own understandings to make sense of their experiences and their learning. For a review of constructivist teaching methods relevant to teaching engineering communication, see [15] and [16].

There is a long tradition in educational literature emphasizing the importance of active learning and student focused learning, for example, [17]. The tutorials employ structured individual and small group learning activities along with regular peer and formative assessment. As the goal is to make explicit the knowledge about texts that is often assumed to be tacit, students receive instruction on and practice in analyzing different text types, rhetorical structures and conventions common to engineering disciplines. All assessment criteria are made explicit.

Peer review and formative assessment provide opportunities for students to reflect on and transfer [18] their new awareness of text types and structures to their own writing. For example, for their major reports, students choose their topics, research relevant information, practice writing (both in and out of classes) using different rhetorical structures that might also be sections for the report, receive peer feedback on their writing, submit a draft report for individual feedback, and then finally, submit a revision as the final assessed report. Revision forces students to engage with feedback [4], [19], [20]. This process is consistent with one of the best and most ancient of engineering traditions, namely learning from mistakes. Peer assessment allows learning from other people and helps develop an awareness of the “audience,” which is essential for producing a reader-friendly text.

The formative approach is also used for the oral presentations that are integrated as part of the writing process. For example, students report their sources of information to the class, provide a critique of these sources, and seek advice from their peers. Peer assessment is presented to students as reflecting how a project team operates in professional practice.

Just as the course uses model texts to help students become aware of writing features and conventions, it also includes models of oral structures from the engineering context. Students are required to attend public lectures, and classes include a few short, formal presentations, such as would occur at a conference.

There are also some structured activities on the writing process as these students, new to tertiary study, are often unaware of how much time is required to produce a good report, and what approaches and skills are required at the different stages of producing a report. The aim here is to help them to think about “how” to complete the task.

A key problem identified from the ALT and student interviews is that many students demonstrated a seriously limited vocabulary, which affected their reading comprehension and the quality of expression. Anecdotal evidence suggests that many students are reading material that is not conducive to improving their vocabulary or knowledge. One of the goals is to have students read regularly and widely; it is hoped they will appreciate alternative reading material that could inform their studies, increase their word power and conceptual understandings and be enjoyable. Thus, the review of a piece of science fiction, written between 1930 and 1974, is included as an assessment task. While such a review is not strictly an engineering genre (it being nontechnical), it requires students to summarize, critically analyze, and form an opinion. Furthermore, most enjoy it!

Some other activities that could be used in such a course are discussed in [21].

C. Student Outcomes

Over the five years that supplementary, out-of-program support was provided for some marginally failing students of elec-
engineers show a preference for working within rules and structure, explicit teaching of grammar may be of interest and hence beneficial for both ESB and NESB engineering students. It remains an open question whether one can or should work systematically on grammar and this question is being investigated as the next stage in course improvement.

Of course, the true effectiveness of any course developing communication skills is only measured by subsequent student demonstration of these skills. In this, the final year thesis (i.e., capstone project) provides evidence; all Engineering students must complete such a thesis. Since the partnership between Electrical Engineering and The Learning Centre was begun in 2000, relevant faculty staff have seen the influence of the material, as originally provided in the introductory course, in the structuring of the final thesis document that all students must submit in the fourth and final year of their BE studies. Indeed, for some NESB students, ensuring that a document has a clear structure has permitted production of a thesis wherein outcomes are clear and easy to identify. This was the case for two NESB students in 2004, who had completed the literacy support workshops in 2001. They made use of what they had learnt. Their thesis was not good but it was well structured, and this was enough to get a pass instead of a fail. When the anticipated professional structure and conventions are followed, it is easier to see through poor English and find the critical information. It means that students are less likely to fail, which is the whole premise for finding space in the curriculum to develop their initially inadequate Academic Literacy and the most satisfying evidence of it being worthwhile.

V. REACTIONS FROM STUDENTS

A. Students and Literacy Assessment

It is instructive to note the diversity of the students’ reactions to the assessment process. Some took offence at the observation that they needed help, especially those who had been led by their schooling or previous tertiary study to believe they communicated well. While plenty of tact was needed, often their problem was an inability to answer the specific question asked. For example, as mentioned in Section II, some students answered a “describe how” question (requiring explanation using temporal and cause-effect text types) with a “describe what” answer (usually defining something and listing features).

B. Student Feedback on the Workshops and Course

Ever since the first series of workshops, students have been asked about what they found helpful and what they were actually learning. This survey has usually taken the form of open-ended questions. Typical responses are the following.

Question
Did you feel during these classes that you were getting more of an idea of how to write a report?
Answer (verbatim from recording)
I feel more confident, in my presentation. I say why. I just say why in my report, not like the first stage [i.e., earlier in session], so yeah.

Question
What have you gained from these classes?
TABLE III
STUDENT RESPONSES IN ANONYMOUS END-OF-TEACHING SURVEY (SESSION 2 2007 ENROLMENT). STUDENTS WERE ASKED TO RANK THE STATEMENTS FROM STRONGLY DISAGREE (1) TO STRONGLY AGREE (5)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercices and examples used in class were appropriate for engineering.</td>
<td>0 0 2 2 5</td>
</tr>
<tr>
<td>The skills I learned in this course will be useful in my engineering courses.</td>
<td>0 0 0 2 7</td>
</tr>
<tr>
<td>I'll be able to refer to the materials to help me with my academic skills or future assignments.</td>
<td>0 0 0 4 5</td>
</tr>
</tbody>
</table>

More analysis of the feedback from students in the early workshops was reported elsewhere [23].

Although many students stated that more work was required in the literacy support course than in other, comparably weighted courses, the students reacted positively to the learning activities and agreed that it was generally useful.

Students who completed the 2007 Course ‘Academic Discourse in Engineering’ (ENGG0380) were questioned in detail. When asked open-ended questions about what were the most beneficial skills learnt, at least two students nominated each of the following:

improved confidence, professional presentation skills (both written and oral), academic writing, appropriate referencing, getting along with others (!), and group communication skills.

The questions detailed in Table III reinforce the importance of context and the students’ perception of relevance, and clearly shows the value of the partnership between engineering academic staff and the literacy specialists.

Students also reacted positively to the formative feedback on their writing: e.g.,

The positive feedback encourages me to work harder. The weaknesses were put in a positive way.

While two students requested the course be longer, provide more speaking practice and more individual consultations, other students felt the course was “enough” and were feeling confident about their future studies. A few students also claimed they would keep reading academic journals, practice writing, start assignments early, and revise the course materials.

VI. CONCLUSION

It is possible to assess the communication skills of an entire class of electrical engineering students without compromising the engineering content of the syllabus or the professional nature of the assessment. This assessment allows the identification of students needing literacy help so that a strategy of early intervention can be followed.

When the electrical engineering faculty staff combine with those who specialize in teaching literacy, students perceive the resulting course as being related directly to their professional training, and are better motivated.

APPENDIX

FEEDBACK FORM FOR INDIVIDUAL LITERACY PROFILE (ILP)

Note that the document occupies both sides of an A4 piece of paper.

Individual Literacy Profile

NAME: . Student Number:

CRITERIA Measurement

A. STRUCTURE AND DEVELOPMENT OF ANSWER 5 4 2 1
• Position statement
• Supporting reasons and explanations—comprehensive
• Paragraphs

B. WRITING STYLE 5 4 2 1
• Choice of words
• Cohesion
• Modality
• Distinguishes fact and opinion

C. GRAMMATICAL CORRECTNESS 5 4 2 1
• Sentence structure
• Use of prepositions
• Use of tenses
• Subject/verb agreement
• Use of articles and determiners
D. READING COMPREHENSION

- Answers—accuracy & quality
- Information selected
- Restatement of information given

Additional Comments:

KEY TO MEASUREMENT

5 = excellent/no problems/correct/appropriate
4 = good/ minor problems/mainly correct/usually appropriate
2 = fair/some problems/sometimes correct/sometimes appropriate
1 = poor/major problems/incorrect/inappropriate

Note: Any rating below 4 indicates further development is needed to do well in first year writing tasks.

WHAT THE MEASUREMENTS MEAN

The measurements reflect your writing ability for first year written assignments. Most students will not receive a measurement of 5 in all skill areas. This does not necessarily mean there is a problem. For instance, a measurement of 4 means your writing needs some development in that particular area. However, measurements of 2 or 1 indicate that you should focus on strengthening that skill if you want to communicate well in your assignments.

ACKNOWLEDGMENT

The authors are grateful for the support and encouragement of several colleagues at UNSW over many years and, in particular, thank S. Starfield, H. Outhred, R. Ford, L. Holloway, C. Reidsema, and S. Kennedy-Clark. They especially thank those students who have taught staff what is needed, what helps and, most importantly, what does not.

REFERENCES

Iain Skinner received the B.Sc. (Hons.) degree from the University of Queensland, Australia, in 1981 and the Ph.D. degree in optical physics from the Australian National University, Canberra, Australia, in 1985. After six years in full-time research involving optical technologies, he joined the School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, Australia, in 1992, where he is currently a Senior Lecturer. His current interests include the professional education of engineers as well as photonic technologies.

Pam Mort received the B.A. degree in visual art from the City Art Institute, Sydney, Australia, in 1984, and the M.A. degree in language in education from the University of Sydney, Australia, in 1996. After eight years as a learning advisor for nursing, education, and art students at the University of Western Sydney, she joined the University of New South Wales, Sydney, Australia, in 1998, where she is currently a Learning Advisor responsible for international postgraduate academic literacy programs and academic literacy support in engineering and science disciplines. Her interests include academic literacy development in engineering and science disciplines from first year through to Ph.D., genre analysis, and systemic functional linguistics.